Effect of Hypoxia on the Differentiation and the Self-Renewal of Metanephrogenic Mesenchymal Stem Cells

نویسندگان

  • Shaopeng Liu
  • Nana Song
  • Jianqiang He
  • Xiaofang Yu
  • Jia Guo
  • Xiaoyan Jiao
  • Xiaoqiang Ding
  • Jie Teng
چکیده

Hypoxia is an important and influential factor in development. The embryonic kidney is exposed to a hypoxic environment throughout its development. The Wnt/β-catenin pathway plays vital roles in the differentiation and self-renewal of metanephrogenic mesenchymal stem cells (MMSCs) from which the kidney is derived. Thus, we hypothesized that hypoxia can regulate the differentiation and pluripotency of MMSCs through the Wnt/β-catenin pathway. To test this hypothesis, MMSCs from rats at embryonic day 18.5 were cultured in normoxic (21% O2) and hypoxic (1% O2) conditions. The effects of hypoxia on differentiation, stemness, proliferation, and apoptosis of cultured MMSCs and on the activity of the Wnt/β-catenin pathway were tested. Our results revealed that the hypoxic condition increased the number of epithelial cells (E-cadherin+ or CK18+) as well the expression of markers of renal tubule epithelia cells (CDH6, Aqp1, and OPN), decreased the number and proliferation of stem cells (SIX-2+ or CITED1+), and induced apoptosis. Additionally, hypoxia reduced the expression of Wnt4 as well as its downstream molecules β-catenin, LEF-1, and Axin2. Activation of the Wnt/β-catenin pathway by LiCl or BIO modified the effects of hypoxia on the differentiation and self-renewal of MMSCs. Thus, we concluded that hypoxia induces the differentiation and inhibits the self-renewal of MMSCs by inhibiting the Wnt/β-catenin pathway. The observations further our understanding of the effects of hypoxia on kidney.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deregulation of Stemness-Related Genes in Endometriotic Mesenchymal Stem Cells: Further Evidence for Self-Renewal/Differentiation Imbalance

Background: Any irregularities in self-renewal/differentiation balance in endometriotic MSCs can change their fate and function, resulting in endometriosis development. This study aimed to evaluate the expression of OCT4 transcripts (OCT4A, OCT4B, and OCT4B1), SOX2, and NANOG in endometriotic MSCs to show their aberrant expression and to support self-renewal/differentiation imbalance in these c...

متن کامل

Mesenchymal Stem Cells: History, Isolation and Biology

Mesenchymal stem cells (MSCs) as a kind of adult stem cells possess two properties of long term selfrenewal ability and multilineage differentiation potential into skeletal cell lineages. MSCs were first isolated and described from bone marrow samples. Further investigations have identified several other tissues as alternative sources for these cells. In spite of the clinical importance of MSCs...

متن کامل

A Review Study: Effect of Growth Factors on Human Mesenchymal Stem Cells Differentiation into Cartilage Tissue

Hyaline cartilage is a vascular and neural tissue with scanty chondrocytes and limited regenerative ability. After some serious injuries of the cartilage, healing process will take place through the formation of fibrocartilage structures. Currently, tissue engineering and cell therapy are 2 interesting therapeutic fields dealing with regenerative medicine. In this regard, tissue&...

متن کامل

Evaluation of the role of mico-RNAs in cardiomyocytes differentiation of mesenchymal stem cells

Stem cells are a good alternative for regenerative medicine because of their characteristics such as self-renewal and differentiation potential. They are classified into different types of stem cells including embryonic stem cells, induced pluripotent stem cells, multipotent stem cells, and ultimately uni-potent stem cells. Mesenchymal stem cells extracted from adult tissues. Due to the lack of...

متن کامل

Effect of Human Umbilical Cord Mesenchymal Stem Cells Transplantation on Nerve Fibers of A Rat Model of Endometriosis

Background Endometriosis is a common, benign, oestrogen-dependent, chronic gynaecological disorder associated with pelvic pain and infertility. Some researchers have identified nerve fibers in endometriotic lesions in women with endometriosis. Mesenchymal stem cells (MSCs) have attracted interest for their possible use for both cell and gene therapies because of their capacity for self-renewal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017